
Design Documents for News Streams

 Group May13-31

Group Members: Jamison Bradley, Lance Staley, Charles Litfin

Advisor: Srikanta Tirthupura

Client: IBM Rochester

Client Contact: Paul Bye

Executive Summary of the Project

 The goal of this project is to deliver a web-based application, which will allow the user to

access different news feeds from a range of news providers. There will be a java backend, which

will gather the articles from various sources, categorize these articles, and detect and aggregate

duplicate articles. These articles will be stored in a database with the user’s information and will

communicate to the webpage the necessary information to be displayed.

Hardware Specifications

 Our project will have no hardware based component to it, so there will not be hardware

specifications for it.

Interface Specifications

 The User Interface should be clean, clear, concise, and easy to use. On the left side of the

browser will be a table called categories which will list the different category of news topics.

When a category is selected articles from that category will be display in the news feed (which

will be discussed later). The news feed will be in the center of the page and will display the four

most recent articles based on the time posted. There will be a next and previous buttons in the

news feed to allow the user to see the next four oldest or the next four newest articles. In the

upper right corner will be a search bar which will allow the user to search by keywords and then

display the relevant articles in the news feed. There will be a login link in the upper left corner

which will redirect you to the login page.

 There will be a second page which will be a simple login page. It will ask for your email

address and password, and then have both a submit button and a back button.

There will a customize sources page which has buttons to redirect to the other pages in

the upper left. Also the is a main box in the middle which contains toggle buttons with the name

of each source on them. When toggled a source is used, when it is not toggled is will not be used.

There is also a save button used to save changes to which buttons have been toggled.

System Analysis

 Key Word Analyzer:

 Our current plan to scan the articles using text analytics written in Java code.The

Key Word Analyzer will receive its input from the Data Parsing sub-function.

 Data Parsing:

 The java backend application will pull the text from the articles and allow the

parsing of the text from the articles.

 Database:

 The database will take their input from the processed information from our

streams application. It will then store this data in the Database and will sent queries back to the

user using JDBC.

 Article Aggregation:

 The Article Aggregation sub-function will receive its input from the Database. It

will then send the information to the user interface to be displayed to the user.

Use Cases

1. Article Selection

Actor: User

 Main Success Story:

 a. The user clicks on one of the four article links.

 b. The article is opened in a new tab and displayed.

 Alternate Success Story:

 a. The user clicks on the next button in the news feed.

 b. The news feeds displays four more articles which are more recent.

 c. The user clicks on one of the four article links

 d. The article opens in a new tab and the article is displayed.

 Alternate Success Story:

 a. The user clicks on the previous button in the news feed.

 b. The news feeds displays four more articles which are more older.

 c. The user clicks on one of the four article links

 d. The article opens in a new tab and the article is displayed.

 Exception #1 – The article does not display in the new tab.

 a. The tab displays a 404 error (page not found error).

 2. Category Selection

 Actor: User

 Main Success Story:

 a. The user selects a category link from the list of categories.

 b. Articles from the selected category are display in the news feed by most

 recent articles first.

 Exception #1 – No articles fit in the selected category.

 a. The news feed displays no articles.

 b. A message on the page will say that no results were found.

 3. Search for Articles

 Actor: User

 Main Success Story:

 a. The user enters a keyword or words in the search bar.

 b. Articles which are relevant to the keyword are displayed in the news

 feed.

 Exception #1 – No articles are relevant to the keywords or words.

 a. The news feed display no articles to the user.

 b. A message on the page will say that no articles were found.

 4. Login

 Actor: User

 Main Success Story:

 a. The user clicks on the login link from the main page.

 b. The user is redirected to the login page.

 c. The user enters their email and password in the corresponding fields.

 d. The user clicks submit.

 Alternate Success Story:

 a. The user clicks on the login link from the main page.

 b. The user is redirected to the login page.

 c. The user clicks the back button in the web browser and is not logged in

and is redirected to the home page.

 Exception #1- User email or password is incorrect.

 a. The user enters their email and password into the corresponding fields.

 b. The user password or email is incorrect and login fails.

 c. The user is prompted that their password or email is incorrect and to try

 again.

Module Design/System Architecture

#1 Website

 This will be our front end that the user will interact with. It will get the stories that are to

be displayed and the information about the stories such as category and date that will help

correctly display the stories the user desires. The front end will retrieve the stories from the

database.

Frontend Modules

A. News Display - This will be the module that displays the news stories for the user to view on

the website.

B. Sources - This module will provide the user with options about what sources are used on the

website. The user will be able to select and deselect default sources and add new ones that aren’t

part of the default.

C. Login - In order to customize content on the website the user will have to create an account

and log in. This module will handle the account creation and login process.

D. Database Connection - This module is used to connect to and retrieve information from the

database. This module consists of java servlet pages(.jsp) which connects to the database using

java and jdbc and make query to the database based on which jsp page is called. The other

frontend Modules with then make AJAX get requesting using javascript to this jsp pages to

retrieve the results of the query.

#2 Database

 The database will store all of the information about the articles that we are displaying on

the website. It will be populated with the information from the java backend.

Tables in Database:

Article Table

Story Table

Users Table

#3 Java Backend

 Our backend will be running on an Iowa State server. The backend will constantly

monitor the websites we are supporting and bring in new articles for analysis when they are

posted to the websites.

Backend Modules and Data Flow

Backend Modules

A. Article Listener - This module will be in charge of finding new articles as they are posted and

bringing them into the system for analysis. This will be achieved by having this module

constantly monitoring a RSS feed.

B. Source Parser - This module will be in charge of determining relevant information about the

articles that will be needed for story aggregation. It uses implementations of the IParser interface

which parse web pages to collected the needed information.

Information Gathered

#1 The keywords in the title

#2 Date of publication

#3 The keywords in the article

#4 Location (if applicable, not all sites provide this information in the meta data)

#5 Category that the article was placed in on the website it comes from

#6 Quotations from the article if there are any

C. Article Analyzer - This module will take the information gathered about the article and try to

match it to one of the stories in the database, and if it can't find a story it matches with it will

make a new story entry for the article in the database. The matching will be done using IScorer

objects.

D. IScorer - This is the interface is used by the Article Analyzer module to determine the

matches between a given article and story in the database. It stipulates that the class

implementing it must have a method called score that takes in two Article objects and returns a

double value between 0 and 100, with 0 meaning the worst match possible between the two

articles and 100 meaning a perfect match between the two articles.

E. Keywords Scorer - The keyword scorer will look at the keywords of two articles and compare

how well they match up. If the two articles share no keywords the comparison will be given a

score of 0, if they share all the same keywords the comparison will be given a score of 100. For a

number of matching keywords in between the score will be calculated by using the formula

below.

Formula = 100 * (number of keywords with matches / total unique keywords between articles)

F. Date Scorer - This scorer will score two articles based on how close the date they were

published is to each other. The maximum amount of time that they can be separated by can be

changed at anytime in the preferences file of the project. A 0 score is given to two articles that

were not published within the allowed time frame and a score of 100 is given to two articles

published at exactly the same time. Formula used to calculate the score is given below.

Formula = 100 * ((max time difference - actual time difference) / max time difference)

G. Quotations Scorer - This scores two articles based on how similar the quotations in the two

articles are to each other. It uses two algorithms, that are then weighted to determine the score.

The weighting of the two algorithms can be changed as need in the preferences file. The first

algorithm used is Edit Distance, which is a measure of how many insertions, deletions, and

replacements are needed to transform one array of values to be equal to another. The second

algorithm used is Longest Common Substring, which returns the longest string of elements that

appear in both arrays. The way these are used to determine the score is a bit harder than the other

two, so no formula will be provided, but if two articles have exactly the same quotes a score of

100 would be given and if the two articles have quotes that share no words in common it would

be given a score of 0.

H. IDatabase - Allows communication with a database to take place so that the state of the

system can be persistent.

Input Output

System

Input: RSS feed of the websites that we are supporting.

Output: A website containing several different news stories, with articles about the same story

aggregated together.

Java Backend Module

Input: Link to article from a website that we support.

Output: Entry in the database about what story that article belongs to.

Java Backend - Article Listener

Input: Multiple RSS feeds from the web sites that we are supporting.

Output: The source code of the webpage whenever it detects that a new article has been posted

on one of the sites.

Java Backend - Source Parser

Input: Source code of the web page containing a news article from one of the sites that we are

supporting.

Output: Several different pieces of information, for more information on what data it will collect

look at the module description, that will be useful in determining if the article is about the same

story as other articles from different sites.

Java Backend - Article Analyzer

Input: Information about the article that is obtained by the Article Analyzer module.

Output: The story from that database that the current article being analyzed matches with, or a

null output if there isn't a story in the database that it matches to.

Java Backend - Database

Input: Data that needs to be stored in the database, or commands to retrieve information from the

database.

Output: Confirmation that the data was successfully stored in the database if storing, and the

information requested if a retrieval of information was requested.

Database Module

Input: Data is sent to be stored or data is requested to be retrieved.

Output: Data is input is stored or data requested is returned.

Website Module

Input: Articles from the database are retrieved by the website.

Output: A user interface for the user to interact with and explore the articles we are presenting.

Functional Decomposition and Test Plan

Overall Function: The overall function of our project is to take in news articles from several

different news sites and then aggregate that data together on one website.

Java Backend - Article Listener

RSS Feed Monitoring: This function will monitor an RSS feed to determine whenever a news

site that we are supporting has posted a new article. Whenever it detects that a new article has

been published it will get the source code of the page that the article is published on.

Test Plan Procedure: After we get this written will look at the RSS feed to see what articles are

on it and then we will make sure that this function is detected all of them and gathering the

source code.

Test Plan Interpretation: If the function is gathering information from all of the links on the RSS

feed it will be considered a successful test.

Java Backend - Source Parser

Parser: This function will parse the source code of web sites that our project is pulling articles

from to get the desired information like the text of the article. Each website will have a slightly

different format so this function will rely on plugins to know how to parse the different website's

source code.

Test Plan Procedure: We will make test case for each site we are going to support, we’re we pick

out the information it should gather by hand and use unit tests to make sure it picks out the same

data.

Test Plan Interpretation: If the function is correctly picking out the data for our test cases we will

consider the test a success.

Java Backend - Article Analyzer

Match Story: This function will look at the stories that are already stored in the database and see

if any of them are the same as the story that is currently being analyzed by the Infosphere

Streams module. If the article is similar it will return information about the story it is similar too,

if it isn't similar it will return that the article is a new story.

Test Plan Procedure: This will be more of an art than a science, since our algorithm will likely

not be capable of working for every single story. So we will look at how stories are getting

grouped and continue to tweak the algorithm to make it the best we can.

Test Plan Interpretation: If the majority of the articles are getting grouped correctly, and we feel

we can't improve the algorithm any more we will consider the function to be complete.

Java Backend - Database

Retrieve Information: This function will retrieve information from the database to be used by

other functions in the Infosphere Streams module.

Test Plan Procedure: We will write a series of unit tests to retrieve information from the

database, and test to make sure the correct things were retrieved.

Test Plan Interpretation: If the unit test all pass we will feel confident that the function is

working correctly.

Store Information: This function will store information in the database.

Test Plan Procedure: We will combine the testing of this function with the Retrieve Information

function. We will create some unit tests where we store some information then immediately

retrieve it.

Test Plan Interpretation: If the unit tests that we include this function in are all passing we will

consider the test to be a success.

Sources

#1 CNN (US)

#2 The Guardian (UK)

#3 BBC (UK)

Project Measures

Our goal is to create a program to categorize and aggregate news articles using IBM Infosphere

streams software. The table below shows our metrics.

Goal Question(s) Metric(s)

Producing our software in a

reasonable amount of time.

How long will it take to

produce?

Until three weeks before the

end of CprE 492

Producing a product with a

long sustainability.

How long is a long

sustainability?

As long as the product is still

useful and/or profitable to IBM

 The cost to sustain the The cost of any additional

product? programming needed to fix

discovered bugs

Have reasonable accuracy in

article aggregation and

category grouping

What is a reasonable

aggregation accuracy

80% of all articles or more

should be correctly

aggregated.

 What is a reasonable category

grouping accuracy?

It will also be 80%

Have a reasonable response

time between article creation

and addition to the database

What is a reasonable

response time?

One hour

Functional Requirements

A). Java Backend

 1. Obtaining Articles

 The backend should be able to pull articles off of the internet and add them to the

database. The backend will obtain various pieces of relevant information as laid out in the article

table.

 2. Scanning

 The backend should be continuously scanning the rss feeds for new articles to be added

to the database.

 3. Sorting

 The backend should be able to sort articles into stories based on date, location, and

article content. These stories will be specific events on which multiple articles are reporting on.

B). Database

 1.) Article Information

 Each article should be stored with the information that is specified by the Article Table in

the database.

 2.) Categories

 Each category has multiple articles assigned to it, but each article can belong to no more

than one category.

 3.) Stories

 Articles belong to stories which are created when the first example of a given story’s

member articles is committed to the database. Stories groups of articles that all deal with the

same event or subject matter, during the same time frame.

C.) User Interface

 1. User Access

 The user should be able to use a profile to login. Their preferences and excluded

sources will be recorded along with their account information.

 2. Article Access

 The user will be able to access articles through links listed under a number of fixed

categories. These articles will be presented as the article title in text along with a link back to the

original web source of the article.

 3. Customization

 The user will be able to remove sources that are supported which the user does not

want to see articles from. Also the user should be allowed to add any previously removed

sources. If additional time is available at the end of development there will be plans to allow the

user to add their own sources.

Non-Functional Requirements

1). Security

 A).Username

 A user account is associated with a single username and password, as well any

modifications the user has made to their sources. Their passwords will be hashed in order to

avoid compromising user security.

2). Performance Requirements

 A). Speed

 The system should be able to obtain a news article quickly after the article is posted to

an RSS feed. The current requirement will be adding an article within three hours of the article

being added to an RSS feed.

 B.) Categorization and Aggregation

 The articles should be properly placed into stories at least 80% of the time. This is tested

through individual user testing.

Risks and Mitigations

Risk Proba

bility

of

Occur

rence

Critic

ality

(0-

100)

Risk

Facto

r

(Prob.

Of

Occur

rence

x

Critic

ality)

Mitig

ation

strate

gy

The

IBM

Strea

ms

softw

are

has

not

been

used

by

any of

our

memb

ers

and

could

be

diffic

ult to

learn

and

imple

ment

.50 80 40 Hold

a

meeti

ng

with

our

IBM

contac

t

about

strea

ms as

well

as

protot

yping

small

strea

ms

applic

ations

for

experi

ence

Lack

of

experi

ence

with

web

devel

opme

nt

.40 60 24 Resea

rch

web

devel

opme

nt as

well

as

protot

ype

some

web

devel

opme

nt

Devel

opme

nt of

the

article

comp

arison

algorit

hm is

more

diffic

ult

than

expect

ed

.30 75 22.5 Resea

rch to

see if

there

are

any

third

party

algorit

hms

that

could

be

used.

Build

a

protot

ype of

the

algorit

hm to

test

early

on.

Add

extra

time

to the

sched

ule.

Usabil

ity in

many

differ

ent

web

brows

ers

and

operat

ing

syste

ms

.40 50 20 Resea

rch

and

devel

op for

a

numb

er of

brows

ers

We

are

unabl

e to

get

strea

ms to

work

with

our

java

back

and

web

fronte

nd.

.20 50 10 Resea

rch

altern

ate

design

option

s as

well

as

using

strea

ms

with

extern

al

code

Standards

 Our team shall always follow the same coding guidelines throughout the project. At the

start of every Java, HTML, CSS, or other file should be a comment describing what the file is for

and does. All functions will have comments one line above the function declaration declaring

what the function does and how the function works. There shall be two blank lines between the

end of one function and the start of another function. The “{“ after a function will be on the same

line as the function with one space between the function and the bracket. The closing bracket

should line up with the starting position of the declaration with the corresponding opening

bracket. All if, for, and while loop statements should be indented one tab from where function

declaration starts. All other code embedded inside a loop should be indented one tab from the

loop declaration starting position. There should be one space on each side of any operators (

=,-,+ ,*, etc.). An example is: x = y + 5. All testing should be documented on what was done and

the corresponding results of the tests.

